For b > 0 and r a rational number, we can use known properties to write the following:

lr7

property of inverse fondions

So therefore, $b^r = e^{r \ln b}$. This is true for all rational r.

We will extend this idea to all real numbers, and use this relationship to define b^x .

Definition of
$$b^x$$

 $b^x = e^{x \ln b}$
 $b \ge 0$, $x \in \mathbb{R}$
 $b \ge 0$,

Recall the expression $2^{\sqrt{3}}$? Now, we can use this definition to write $2^{\sqrt{3}}$.

$$b^{n} = e^{\frac{\pi}{2} \frac{\pi n p}{p}}$$

$$z = e^{\sqrt{3} \ln z}$$

$$5^{3} = e^{3 \ln 5}$$

$$b^{-2} = x = \sqrt{3}$$

The function $f(x) = b^x$ is called the **exponential function with base** b.

Additionally, with this definition, the power rule for the ln function $(\ln b^r = r \ln b$ for rational r) can now be extended to be true for all real numbers.

$$\ln b^x = \ln e^{x \ln b}$$
$$= x \ln b$$

Therefore, $\ln b^x = x \ln b$ for any real number x.

Laws of Exponents If x and y are real numbers and a, b > 0, then 1. $\frac{b^{x}b^{y} = b^{x+y}}{b^{y}}$ (Product Law) 2. $\frac{b^{x}}{b^{y}} = b^{x-y}$ (Quotient Law) 3. $(b^{x})^{y} = b^{xy}$ (Power Law) 4. $(ab)^{x} = a^{x}b^{x}$ (Product-to-power Law) $(2x)^{3} = z^{3} \cdot x^{3}$ Proof of (1) Product Law:

(try-for-yourself: prove the other three laws)

Derivative of the exponential function with base b:

$$\frac{d}{dx}(b^{x}) = b^{x} \ln b$$
Chain Rule: $\frac{d}{dx}b^{u} = b^{u} \ln b \left(\frac{du}{dx}\right)$
Example: $\frac{d}{dx}(5^{x}) = 5^{x} \ln 5$
 $\frac{d}{dx}(7^{x}) = 7^{x} l_{n}(7)$
 $\frac{d}{dx}(e^{\pi}) = e^{\pi} l_{n}e = e^{\pi}$

Proof:

2

$$\frac{p_{out}(x, r_{i})}{(x, r_{i})} = r_{i} r_{i}$$

SummaryFor constants
$$b, n$$
 $(a | c T power rule $c constant$ $\frac{d}{dx}b^n = 0$ $\frac{d}{dx}[f(x)]^n = n[f(x)]^{n-1}f'(x)$ $\frac{d}{dx}b^{g(x)} = b^{g(x)}\ln b \cdot g'(x)$ $\frac{d}{dx}[f(x)]^{g(x)} \rightarrow$ Use logarithmic differentiation.
OR rewrite b^u as $e^{u\ln b}$ and differentiate.$

$$\frac{d}{dx}(b^{x}) = b^{x} \cdot \ln b$$

Integral of the exponential function with base b:

<u>Proof</u>:

$$\int b^{x} dx = \frac{1}{\ln b} (b^{x}) + C \qquad ; \qquad \int b^{u} du = \frac{1}{\ln b} (b^{u}) + C$$

$$\int b^{x} dx = \int e^{x \ln b} dx \qquad Let v = x(\ln b)$$

$$= \int e^{v} \cdot \frac{1}{\ln b} dv \qquad \frac{dv}{dnb} = \frac{dn}{dnb} \frac{dx}{dx}$$

$$= \int e^{v} \cdot \frac{1}{dnb} dv \qquad \frac{dv}{dnb} = \frac{dx}{dnb} \frac{dv}{dx}$$

$$= \int e^{v} + C \qquad \frac{1}{dnb} e^{v} +$$

Example 2: Evaluate the integral.

$$\int \frac{10^{\sqrt{x}}}{\sqrt{x}} dx$$

$$= 2 \int 10^{\circ} dv$$

$$= 2 \left(\frac{10^{\circ}}{R_{n} t_{0}} \right) + C$$

$$= 2 \left(\frac{10^{\sqrt{x}}}{R_{n} t_{0}} \right) + C$$

$$= 2 \left(\frac{10^{\sqrt{x}}}{R_{n} t_{0}} \right) + C$$

$$= 2 \left(\frac{10^{\sqrt{x}}}{R_{n} t_{0}} \right) + C$$

Graph of
$$(y-b)$$
, $b>0$ and $b \neq 1$,
 $f(x) = b^{x} = e^{abb} > 0$ Domain: $(-\infty, \infty)$ Range: $(0, \infty)$
For $b>1$, $\Rightarrow l_{a}b = 0$
 $f(x) = b^{x}$
 $f(x) = b^{x$

General Logarithmic Functions

Since b^x is one-to-one, it has an inverse function. Its inverse function is called **the logarithmic** function with base b.

Laws of Logarithms (1) $\log_b(xy) = \log_b x + \log_b y$ Product Law Quotient Law (2) $\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$ (3) $\log_b(x^y) = y \log_b x$

<u>Proof</u> of (1):

So:

(try-for-yourself: prove the other two laws)

Let
$$u = \log_b x$$
 and $v = \log_b y$
Then $x = \begin{bmatrix} v \\ b \end{bmatrix}$ and $y = \begin{bmatrix} v \\ b \end{bmatrix}$
 $\log_b(xy) = \log_b\left(\begin{pmatrix} v & v \\ b & b \end{pmatrix} \right)$ by substitution
 $= \log_b\left(\begin{pmatrix} v & v \\ b & b \end{pmatrix} \right)$ product law for b^x
 $= v + v$ cancellation property

$$\log_{b}(xy) = \log_{b} x + \log_{b} y$$
 Q.E.D

Derivative of $\log_{h} x$

$$\frac{d}{dx}\log_b x = \frac{1}{\ln b} \cdot \frac{1}{x} = \frac{1}{x\ln b}$$
 Chain

Chain Rule:
$$\frac{d}{dx} (\log_b u) = \frac{1}{\ln b} \cdot \frac{u'}{u}$$

Proof:

$$\frac{d}{dx}\log_b x = \frac{d}{dx} \frac{\ln \pi}{\ln b}$$
$$= \frac{1}{\ln b} \cdot \frac{d}{d\pi} \ln \pi$$
$$= \frac{1}{\ln b} \cdot \frac{1}{\pi}$$
$$= \frac{1}{\pi \ln b}$$

by the change of base formula

Example 3 Find the <u>equation of the tangent line</u> to the graph of $y = e^{\cos x} \log_3(3\tan x)$ at $x = \frac{\pi}{3}$. Recall: The equation of a line with slope m and passing through the point (x_1, y_1) is $y - y_1 = m(x - x_1)$

The equation of a **tangent line** to the graph of y = f(x) at the point x = a is given by

(a, f(a))slope at that point S'(a) $y - f(a) = f'(a) \left(x - a \right)$

Step 1: Find the derivative of the function.

$$\frac{dy}{dx} = e^{\cos x} \cdot \log_3(3\tan x)$$

$$\frac{dy}{dx} = e^{\cos x} (-\sin x) \cdot \log_3(3\tan x) + e^{\cos x} \cdot \frac{1}{\ln^3} \cdot \frac{\cancel{5} \sec^2 x}{\cancel{5} \tan x}$$

$$= (-\sin x) \cdot \log_3(3\tan x) + \frac{e^{\cos x} \cdot e^{\cos x}}{(\ln^3) \tan x}$$

Step 2: Find the derivative of the function at the given point. (this is the slope of the tangent line at that point.), i.e. find f'(a) with $a = \frac{\pi}{2}$ for this problem. - 1/2

$$\begin{aligned} Y'(\frac{\pi}{3}) &= \left(-\sin\left(\frac{\pi}{3}\right)\right) e^{\cos\frac{\pi}{3}} \cdot \log_{3}\left(3\tan\frac{\pi}{3}\right) + \frac{e^{\cos\frac{\pi}{3}}}{(\ln 3)\tan\frac{\pi}{3}} + \frac{e^{\cos\frac{\pi}{3}}}{(\ln 3)\tan\frac{\pi}{3}} \\ &= \left(-\frac{\sqrt{3}}{2}\right) e^{\frac{1}{2}} \log_{3}\left(3\sqrt{3}\right) + \frac{e^{\frac{1}{2}}\left(2\right)^{2}}{(\ln 3)\sqrt{3}} \\ &= -\frac{\sqrt{3}}{2} \left(\sqrt{e}\right) \log_{3}\left(\frac{5}{2}\sqrt{2}\right) + \frac{4\sqrt{e}}{\sqrt{3}\ln3} \\ &= -\frac{\sqrt{3e}}{2} \cdot \frac{3}{2} + \frac{4\sqrt{e}}{\sqrt{3}\ln3} = \frac{-3\sqrt{3e}}{4} + \frac{4\sqrt{e}}{\sqrt{3}\ln3} \end{aligned}$$

Example 3 cont'd:

Find the <u>equation of the tangent line</u> to the graph of $y = e^{\cos x} \log_3(3\tan x)$ at $x = \frac{\pi}{3}$

The equation of a **tangent line** to the graph of y = f(x) at the point x = a is given by

$$y - y_1 = m(\pi - r_1)$$

<u>Step 3</u>: Find the equation of the tangent line using the point and the slope of the tangent line at that point. (if it's not given, you'll need to first find the y-value at the given point, i.e. find f(a))

$$f\left(\frac{\pi}{3}\right) = e^{\cos\frac{\pi}{3}} \cdot \log_{3}\left(3\tan\frac{\pi}{3}\right)$$
$$= e^{\frac{1}{2}} \log_{3}\left(3\sqrt{3}\right)$$
$$= \sqrt{e} \cdot \frac{3}{2} = \frac{3\sqrt{e}}{2}$$

EQUATION:

$$y - \frac{3\sqrt{e}}{2} = \left(\frac{-3\sqrt{3e}}{4} + \frac{4\sqrt{e}}{\sqrt{3}\ln^3}\right)\left(\pi - \frac{\pi}{3}\right)$$