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What is an Error Function?

The Error Function is defined as:

erf(x) =
2√
π

∫ x

0

e−t2 dt (1)

Graph of erf(x):
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Figure 1: Graph of the Error Function erf(x).

Now you can see, this is an odd function! So erf(−x) = − erf(x) As shown
in Figure 1, the graph also has horizontal asymptotes of y = 1 and y = −1.

There is also a complementary error function:

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt (2)

There’s an interesting property that arises when we combine these two error
functions:

erf(x) + erfc(x) = 1 (3)

Now, why would we care about this? We can’t solve the integral but it
appears frequently in statistics, heat transfer, and physics, so we gave it a
function name and manually computed its values for later reference.
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Now that you know what it is and how the graph looks, let’s try some prob-
lems!

First split it apart:

1

∫ t

0

x2e−x2

dx =

∫ t

0

x · xe−x2

dx

Then, use integration by parts. Let

u = x, dv = xe−x2

dx.

Then (using u-sub for dv → v)

du = dx, v =

∫
xe−x2

dx = −1

2
e−x2

.

Thus, ∫
x2e−x2

dx = uv −
∫

v du = −x

2
e−x2

+
1

2

∫
e−x2

dx+ C.

Since ∫
e−x2

dx =

√
π

2
erf(x),

the anti-derivative becomes∫
x2e−x2

dx = −x

2
e−x2

+

√
π

4
erf(x) + C.

Evaluating from 0 to t:∫ t

0

x2e−x2

dx =

[
−x

2
e−x2

+

√
π

4
erf(x) + C

]t
0

.

Since e0 = 1, erf(0) = 0 and the C’s cancel, the result is

∫ t

0

x2e−x2

dx =

√
π

4
erf(t)− t

2
e−t2 .
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2

∫
erf(x) dx

Start with integration by parts.

u = erf(x), dv = dx.

Use the derivative of erf(x) from the previous problem to solve.

du =
2√
π
e−x2

dx, v = x

Thus, ∫
erf(x) dx = uv −

∫
v du = x erf(x)− 2√

π

∫
xe−x2

dx

Using the integral of
∫
xe−x2

dx from the previous problem, the result is

∫
erf(x) dx = x erf(x) +

e−x2

√
π

+ C .
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3

∫ t

1

1

ex2 erf(x)
dx

First, apply u-sub

Let: u = erf(x), du =
2√
π
e−x2

dx

Then, isolate dx

du =
2√
π
e−x2

dx →
√
π

2
ex

2

du = dx

Thus, ∫ t

1

1

ex2 erf(x)
dx =

√
π

2

∫
1

u
du, u = erf(x)

Evalutate and plug back in your u∫ t

1

1

ex2 erf(x)
=

√
π

2
[ln(erf(x))]

t
1

Plug in your bounds and simplify. The result is∫ t

1

1

ex2 erf(x)
=

√
π

2
ln

[
erf(t)

erf(1)

]
.
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∫
2e−x2

erfc(x)− erf(x)
dx

First, notice the denominator can be modified with the error function identity.

erfc(x) + erf(x) = 1 → erfc(x) = 1− erf(x)

Thus, ∫
2e−x2

erfc(x)− erf(x)
dx =

∫
2e−x2

1− 2 erf(x)
dx

Now, you can apply u-sub

Let: u = 1− 2 erf(x), du = −2
2√
π
e−x2

dx

Then, isolate dx.

du = −2
2√
π
e−x2

dx → −
√
π

4
ex

2

du

Thus, ∫
2e−x2

erfc(x)− erf(x)
dx = −

√
π

2

∫
1

u
du, u = 1− 2 erf(x)

Integrate∫
2e−x2

erfc(x)− erf(x)
dx = −

√
π

2
ln |u|+ C, u = 1− 2 erf(x)

Finally, plug back in your u.

∫
2e−x2

erfc(x)− erf(x)
dx = −

√
π

2
ln |1− 2 erf(x)|+ C
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∫ 2 ln
(
erf(x)e−x2

)(
1√
π
e−x2 − x · erf(x)

)
erf(x)

dx

First, recognize that the numerator’s second term looks similar to product rule.
Try u-sub with the natural log’s argument:

Let: u = erf(x)e−x2

,
du

dx
= 2e−x2

[
1√
π
e−x2

− x · erf(x)
]

Now, we can let du
dx = u′ (for easier viewing) and isolate that second term in

the numerator
u′

2e−x2 =
1√
π
e−x2

− x · erf(x)

If we take then take our defined u and isolate e−x2,

e−x2

=
u

erf(x)
→ u′

2
· erf(x)

u
=

1√
π
e−x2

− x · erf(x)

Substituting back in our du
dx and moving dx to the right side,

du

2u
=

1√
π
e−x2 − x · erf(x)

erf(x)
dx

Now, substituing back into the original equation, such that

∫ 2 ln
(
erf(x)e−x2

)(
1√
π
e−x2 − x · erf(x)

)
erf(x)

dx =

∫
ln(u)

u
du, u = erf(x)e−x2

Now, use a simple v-substitution

Let: v = ln(u), dv =
1

u
du

Thus, ∫
v dv =

1

2
v2 + C

Finally, plug your v in, then your u

1

2
v2 + C → 1

2
ln(u)2 + C → 1

2
ln

∣∣∣erf(x)e−x2
∣∣∣2 + C

This leaves you with the result

∫ 2 ln
(
erf(x)e−x2

)(
1√
π
e−x2 − x · erf(x)

)
erf(x)

dx =
1

2
ln

∣∣∣erf(x)e−x2
∣∣∣2 + C
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