

# Error Function

by Thomas Yamada

February 4, 2026

What is an Error Function?

The Error Function is defined as:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \quad (1)$$

Graph of  $\operatorname{erf}(x)$ :

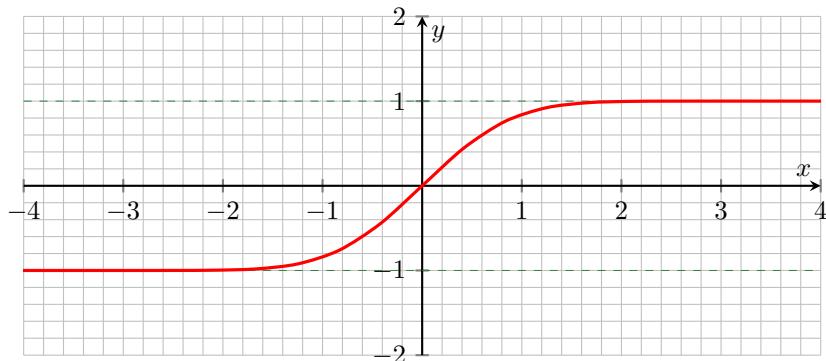


Figure 1: Graph of the Error Function  $\operatorname{erf}(x)$ .

Now you can see, this is an odd function! So  $\operatorname{erf}(-x) = -\operatorname{erf}(x)$  As shown in Figure 1, the graph also has horizontal asymptotes of  $y = 1$  and  $y = -1$ .

There is also a complementary error function:

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt \quad (2)$$

There's an interesting property that arises when we combine these two error functions:

$$\operatorname{erf}(x) + \operatorname{erfc}(x) = 1 \quad (3)$$

Now, why would we care about this? We can't solve the integral but it appears frequently in statistics, heat transfer, and physics, so we gave it a function name and manually computed its values for later reference.

Now that you know what it is and how the graph looks, let's try some problems!

First split it apart:

$$1 \quad \int_0^t x^2 e^{-x^2} dx = \int_0^t x \cdot x e^{-x^2} dx$$

Then, use integration by parts. Let

$$u = x, \quad dv = x e^{-x^2} dx.$$

Then (using u-sub for  $dv \rightarrow v$ )

$$du = dx, \quad v = \int x e^{-x^2} dx = -\frac{1}{2} e^{-x^2}.$$

Thus,

$$\int x^2 e^{-x^2} dx = uv - \int v du = -\frac{x}{2} e^{-x^2} + \frac{1}{2} \int e^{-x^2} dx + C.$$

Since

$$\int e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \operatorname{erf}(x),$$

the anti-derivative becomes

$$\int x^2 e^{-x^2} dx = -\frac{x}{2} e^{-x^2} + \frac{\sqrt{\pi}}{4} \operatorname{erf}(x) + C.$$

Evaluating from 0 to  $t$ :

$$\int_0^t x^2 e^{-x^2} dx = \left[ -\frac{x}{2} e^{-x^2} + \frac{\sqrt{\pi}}{4} \operatorname{erf}(x) + C \right]_0^t.$$

Since  $e^0 = 1$ ,  $\operatorname{erf}(0) = 0$  and the  $C$ 's cancel, the result is

$$\boxed{\int_0^t x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4} \operatorname{erf}(t) - \frac{t}{2} e^{-t^2}}.$$

$$2 \int \operatorname{erf}(x) dx$$

Start with integration by parts.

$$u = \operatorname{erf}(x), \quad dv = dx.$$

Use the derivative of  $\operatorname{erf}(x)$  from the previous problem to solve.

$$du = \frac{2}{\sqrt{\pi}} e^{-x^2} dx, \quad v = x$$

Thus,

$$\int \operatorname{erf}(x) dx = uv - \int v du = x \operatorname{erf}(x) - \frac{2}{\sqrt{\pi}} \int x e^{-x^2} dx$$

Using the integral of  $\int x e^{-x^2} dx$  from the previous problem, the result is

$$\int \operatorname{erf}(x) dx = x \operatorname{erf}(x) + \frac{e^{-x^2}}{\sqrt{\pi}} + C.$$

$$3 \int_1^t \frac{1}{e^{x^2} \operatorname{erf}(x)} dx$$

First, apply  $u$ -sub

$$\text{Let: } u = \operatorname{erf}(x), \quad du = \frac{2}{\sqrt{\pi}} e^{-x^2} dx$$

Then, isolate  $dx$

$$du = \frac{2}{\sqrt{\pi}} e^{-x^2} dx \rightarrow \frac{\sqrt{\pi}}{2} e^{x^2} du = dx$$

Thus,

$$\int_1^t \frac{1}{e^{x^2} \operatorname{erf}(x)} dx = \frac{\sqrt{\pi}}{2} \int \frac{1}{u} du, \quad u = \operatorname{erf}(x)$$

Evaluate and plug back in your  $u$

$$\int_1^t \frac{1}{e^{x^2} \operatorname{erf}(x)} = \frac{\sqrt{\pi}}{2} [\ln(\operatorname{erf}(x))]_1^t$$

Plug in your bounds and simplify. The result is

$$\boxed{\int_1^t \frac{1}{e^{x^2} \operatorname{erf}(x)} = \frac{\sqrt{\pi}}{2} \ln \left[ \frac{\operatorname{erf}(t)}{\operatorname{erf}(1)} \right].}$$

$$4 \int \frac{2e^{-x^2}}{\operatorname{erfc}(x) - \operatorname{erf}(x)} dx$$

First, notice the denominator can be modified with the error function identity.

$$\operatorname{erfc}(x) + \operatorname{erf}(x) = 1 \rightarrow \operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$$

Thus,

$$\int \frac{2e^{-x^2}}{\operatorname{erfc}(x) - \operatorname{erf}(x)} dx = \int \frac{2e^{-x^2}}{1 - 2\operatorname{erf}(x)} dx$$

Now, you can apply  $u$ -sub

$$\text{Let: } u = 1 - 2\operatorname{erf}(x), \quad du = -2\frac{2}{\sqrt{\pi}}e^{-x^2} dx$$

Then, isolate  $dx$ .

$$du = -2\frac{2}{\sqrt{\pi}}e^{-x^2} dx \rightarrow -\frac{\sqrt{\pi}}{4}e^{x^2} du$$

Thus,

$$\int \frac{2e^{-x^2}}{\operatorname{erfc}(x) - \operatorname{erf}(x)} dx = -\frac{\sqrt{\pi}}{2} \int \frac{1}{u} du, \quad u = 1 - 2\operatorname{erf}(x)$$

Integrate

$$\int \frac{2e^{-x^2}}{\operatorname{erfc}(x) - \operatorname{erf}(x)} dx = -\frac{\sqrt{\pi}}{2} \ln|u| + C, \quad u = 1 - 2\operatorname{erf}(x)$$

Finally, plug back in your  $u$ .

$$\int \frac{2e^{-x^2}}{\operatorname{erfc}(x) - \operatorname{erf}(x)} dx = -\frac{\sqrt{\pi}}{2} \ln|1 - 2\operatorname{erf}(x)| + C$$

$$5 \quad \int \frac{2 \ln(\operatorname{erf}(x)e^{-x^2}) \left( \frac{1}{\sqrt{\pi}} e^{-x^2} - x \cdot \operatorname{erf}(x) \right)}{\operatorname{erf}(x)} dx$$

First, recognize that the numerator's second term looks similar to product rule. Try  $u$ -sub with the natural log's argument:

$$\text{Let: } u = \operatorname{erf}(x)e^{-x^2}, \quad \frac{du}{dx} = 2e^{-x^2} \left[ \frac{1}{\sqrt{\pi}} e^{-x^2} - x \cdot \operatorname{erf}(x) \right]$$

Now, we can let  $\frac{du}{dx} = u'$  (for easier viewing) and isolate that second term in the numerator

$$\frac{u'}{2e^{-x^2}} = \frac{1}{\sqrt{\pi}} e^{-x^2} - x \cdot \operatorname{erf}(x)$$

If we take then take our defined  $u$  and isolate  $e^{-x^2}$ ,

$$e^{-x^2} = \frac{u}{\operatorname{erf}(x)} \rightarrow \frac{u'}{2} \cdot \frac{\operatorname{erf}(x)}{u} = \frac{1}{\sqrt{\pi}} e^{-x^2} - x \cdot \operatorname{erf}(x)$$

Substituting back in our  $\frac{du}{dx}$  and moving  $dx$  to the right side,

$$\frac{du}{2u} = \frac{\frac{1}{\sqrt{\pi}} e^{-x^2} - x \cdot \operatorname{erf}(x)}{\operatorname{erf}(x)} dx$$

Now, substituting back into the original equation, such that

$$\int \frac{2 \ln(\operatorname{erf}(x)e^{-x^2}) \left( \frac{1}{\sqrt{\pi}} e^{-x^2} - x \cdot \operatorname{erf}(x) \right)}{\operatorname{erf}(x)} dx = \int \frac{\ln(u)}{u} du, \quad u = \operatorname{erf}(x)e^{-x^2}$$

Now, use a simple  $v$ -substitution

$$\text{Let: } v = \ln(u), \quad dv = \frac{1}{u} du$$

Thus,

$$\int v dv = \frac{1}{2} v^2 + C$$

Finally, plug your  $v$  in, then your  $u$

$$\frac{1}{2} v^2 + C \rightarrow \frac{1}{2} \ln(u)^2 + C \rightarrow \frac{1}{2} \ln |\operatorname{erf}(x)e^{-x^2}|^2 + C$$

This leaves you with the result

$$\int \frac{2 \ln(\operatorname{erf}(x)e^{-x^2}) \left( \frac{1}{\sqrt{\pi}} e^{-x^2} - x \cdot \operatorname{erf}(x) \right)}{\operatorname{erf}(x)} dx = \frac{1}{2} \ln |\operatorname{erf}(x)e^{-x^2}|^2 + C$$