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What is the Gamma Function?

The Gamma Function is defined as:

Γ(z) =

∞∫
u=0

uz−1e−u dt (1)

Graph of Γ(z):
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Figure 1: Graph of the Gamma Function Γ(z).

You can see, by the graph, that the function is neither odd or even, because
its asymmetric everywhere. There is no linearity either.

There is two relations though. It’s core identity is the recurrence relation,
the Gamma’s equivalent of a ”linearity rule”:

Γ(z + 1) = zΓ(z) (2)

Then, you have Euler’s Reflection Formula, a sort of complementary behav-
ior:

Γ(z)Γ(1− z) =
π

sin(πz)
(3)
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So, what is this Gamma Function really? Remember the factorial? Well,

Γ(z + 1) = z! (4)

It’s partially that simple, but also not exactly. If you remember using the
factorial, you’ve only ever used integers, because that’s easy to compute with
the basic function. i.e. 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720

But, how would you do that with 1
2 !? What about − 1

2 !? That’s where the
Gamma Function steps in. It allows you to computer the ”factorial” of non
integers. It does have some restrictions though:

Dom(Γ) = R\
{
−n : n ∈ Z≥0

}
(5)

Let’s try Γ(1):

Γ(1) =

∞∫
u=0

u0e−u du =

∞∫
u=0

e−u du

Γ(1) =
[
−e−u

]∞
u=0

= 0− (−1)

Γ(1) = 1 = 0!

(6)

For Γ(2), you’ll need to use a simple IBP:

Γ(2) =

∞∫
u=0

u1e−u du =

∞∫
u=0

te−u du

Γ(2) = −ue−u +

∞∫
u=0

e−u du = 0 + 1

Γ(2) = 1 = 1!

(7)

You can probably see where this is going. Γ(3) = 2 = 2!

So, what about the recurrence relation? How can we use that? Well, keep in
mind that computing Γ(0) does not exist, as you can see from the graph above.
So, if we were to apply Γ(z+1) = zΓ(z) to get, for example, a negative integer,
you’d need to re-use the relation again and again until you reached a computable
number, but you’d always hit 0 before anything actually computable, which is
why every negative integer less than 0 does not exist.

Then, what about negative fractionals? Let’s use some negative fractional
that is perfectly divisible by 1

2 , such as − 3
2 . You’ll need to use the recurrence

relation in order to get to that. The first directly computable value for that
is Γ( 12 ), so we need to solve that first. Luckily, it gives a nice number to work
with.
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Let’s look into how we’d find Γ
(

1
2

)
:

Γ

(
1

2

)
=

∞∫
u=0

e−uu− 1
2 du

Let’s rewrite it so it’s easier to read.

Γ

(
1

2

)
=

∞∫
u=0

e−u 1√
u
du

Now, let’s apply u-sub,

Let: w =
√
u, dw =

1

2
√
u
dw, u = w2

Next, substitute back in and factor out the 2.

Γ

(
1

2

)
= 2

∞∫
w=0

e−w2

dw

Looking at the graph for this new function, we can see that the integral can
consume the 2 and expand the integral bounds from 0 → ∞ to −∞ → ∞.
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Figure 2: Graph of the Bell Curve f(x) = e−x2

.

So, let’s change the bounds. Let’s also set the integral to some arbitrary variable,
J .

J =

∞∫
w=−∞

e−w2

dw

Since e−w2

has no elementary anti derivative, we can use a Mutlivariable Calcu-
lus trick to solve the integral. First, we’ll square both sides, splitting the right
hand side into two integrals with arbitrary variables, x and y.
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J2 =


∞∫

x=−∞

e−x2

dx




∞∫
y=−∞

e−y2

dy


Now, we need to combine them. We’ll do that using Fubini’s Theorem, turning
the squared/multiplied integrals into a double integral.

J2 =

∞∫
x=−∞

∞∫
y=−∞

e−x2

e−y2

dy dx

Looking at this, the x and y covers the entire Cartesian Plane. So, we can
compact the double integral to cover all real numbers on the 2D plane, R2.

J2 =

∫∫
R2

e−x2

e−y2

dx dy =

∫∫
R2

e−x2−y2

dx dy

The exponent on the e looks similar to the circle equation, so we’re going to
convert the integral into polar coordinates.

r2 = x2 + y2 dx dy = r dr dθ

The angle only needs to go from 0 → 2π to cover the entire graph, as well as
0 → ∞ for the radius.

J2 =

2π∫
θ=0

∞∫
r=0

e−r2r dr dθ

Now, we can split this apart again by doing a reverse Fubini’s Theorem and
solving the left, simple, integral.

J2 =


2π∫

θ=0

dθ




∞∫
r=0

e−r2r dr

 = 2π

∞∫
r=0

e−r2r dr

From here, do u-sub letting v = r2. We’re using v because u is already used
before in the problem.

Let: v = r2, dv = 2r dr

Substituting it in, the 2’s and r’s cancel.

J2 = π

∞∫
r=0

e−v dv

Next, solve the integral and evaluate the bounds of integration.

J2 = π

[
e−v

−1

]∞
r=0

= π
[
0− (−1)

]
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Finally, simplify in the brackets and take the square root of both sides, isolating
J.

J2 = π → J =
√
π

Substituting back in the original function for J, we get:

Γ

(
1

2

)
=

√
π
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Now, we’ve gone over the graph of the function as well as a relatively com-
plex example. Let’s do some problems!

First, let’s convert it into terms of the Gamma Function.

1
3

2
! = Γ(5/2)

Now, let’s split it apart and pull the z out,

Γ

(
5

2

)
= Γ

(
3

2
+ 1

)
=

3

2
Γ

(
3

2

)

So, you’ve lowered the value in the Gamma Function, but its not yet low enough
to be something we’ve seen before. Let’s do it again.

Γ

(
5

2

)
=

3

2
Γ

(
1

2
+ 1

)
=

3

2
· 1
2
Γ

(
1

2

)

Oh, we’ve seen that before! Γ
(

1
2

)
=

√
π. Thus,

3

2
! =

3

2
· 1
2
·
√
π =

3
√
π

4
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Before anything, let’s expand (x+ 1)4,

2

∞∫
0

e−x(x+ 1)4 dx =

∞∫
0

e−x · (x4 + 4x3 + 6x2 + 4x+ 1) dx

Now, distribute and split apart the integral(s). I’m also going to assign the
original integral the variable R:

R =

∞∫
0

x4e−x dx+ 4

∞∫
0

x3e−x dx+ 6

∞∫
0

x2e−x dx+ 4

∞∫
0

xe−x dx+

∞∫
0

dx

Remember the simple Gamma Function of a Factorial, that is:

n! =

∞∫
0

e−uun du

So, if we switch each integral into factorial form,

R = 4! + 4 · 3! + 6 · 2! + 4 · 1! + 0!

Computing this gives you your answer!

R = 65
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3

∞∫
1

(ln(x))3

x2
dx

Let’s u-sub first.

Let: u = ln(x) =⇒ x = eu, dx = eu du

Before substituting it back in, we need to change the bounds of integration,

When: x = 1 → u = ln(1) = 0

When: x = ∞ → u = ln(∞) = ∞

We can now substitute everything in,

∞∫
1

(ln(x))3

x2
dx =

∞∫
0

u3

e2u
· eu du

We can now cancel things and move values up to the numerator, since we’re
looking for the Gamma Function form.

∞∫
1

(ln(x))3

x2
dx =

∞∫
0

e3e−u du

That’s a recognizable form!

∞∫
1

(ln(x))3

x2
dx = 3! = 6
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4

∞∫
0

x6e−4x2

dx

First step, we’ll perform a u-sub,

Let: u = 4x2,
du

8x
= dx, x2 =

u

4
, x =

√
u

2

Don’t forget to also check the bounds,

When: x = 0 =⇒ u = 0, x = ∞ =⇒ u = ∞

We also need to split apart the x6 to a defined value we already have.

x6 =
(
x2
)3

, x6 =

(
u

4

)3

=
u3

64

There we go! Let’s substitute in!

∞∫
0

x6e−4x2

dx =

∞∫
0

u3

64
e−u 1

4
√
u
du =

1

256

∞∫
0

u
5
2 e−u du

Recall the Gamma Function:

Γ(a) =

∞∫
0

ua−1e−u du

So, if we manipulate the exponent for u, we can get it into the right form and
condense the expression into Gamma form (Γ(a)).

∞∫
0

x6e−4x2

dx =
1

256

∞∫
0

u
7
2−1e−u du =

1

256
· Γ

(
7

2

)

Now, we have seen something similar with fractions, like in Problem 1. Let’s
use the recurrence relation to break it down.

Γ

(
7

2

)
= Γ

(
5

2
+ 1

)
=

5

2
Γ

(
5

2

)
= · · · = 5

2
· 3
2
· 1
2
Γ

(
1

2

)
But, we know that Γ 1

2 =
√
π, so plugging everything in now,

∞∫
0

x6e−4x2

dx =
1

256
· 5
2
· 3
2
· 1
2
·
√
π

Finally, that gives you:

∞∫
0

x6e−4x2

dx =
15

√
π

2048
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First, we’ll pull the x out to simplify the radical. Also use your log rules to
simplify the argument of the natural log.

5

1∫
0

x3

√√√√x ln

(
1

x

)
dx =

1∫
0

x3
√
x
√
− ln (x) dx =

1∫
0

x
7
2

√
ln− (x) dx

Let’s do a u-sub to start,

Let: u = − ln(x) =⇒ x = e−u, dx = −e−u du

Adjust the bounds,

When: x = 0 =⇒ u = ∞, x = 1 =⇒ u = 0

Substitute in all the values,

1∫
0

x3

√√√√x ln

(
1

x

)
dx =

0∫
∞

e−
7
2u
√
u
(
−e−u

)
du

Flip the bounds and let the negatives cancel,

1∫
0

x3

√√√√x ln

(
1

x

)
dx =

∞∫
0

e−
9
2uu

1
2 du

We’re going to do another substitution, because we need the exponent on the e
to be −u.

Let: t =
9

2
u =⇒ u =

2

9
t, dt =

9

2
du

Now, substitute it all in, simplify the constants and factor them out.

1∫
0

x3

√√√√x ln

(
1

x

)
dx =

2

9

∞∫
0

e−t

(
2

9
t

) 1
2

dt =
2
√
2

27

∞∫
0

e−tt
1
2 dt

Recognize the Gamma Function, and use recurrence relation,

1∫
0

x3

√√√√x ln

(
1

x

)
dx =

2
√
2

27

∞∫
0

e−tt
3
2−1 dt =

2
√
2

27
Γ

(
3

2

)
=

2
√
2

27
· 1
2
·
√
π

Finally, cancel the 2’s and you’re finished!

1∫
0

x3

√√√√x ln

(
1

x

)
dx =

√
2π

27
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